3.3 \(\int \frac {c+d x^2}{a-b x^4} \, dx\)

Optimal. Leaf size=86 \[ \frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}}+\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}} \]

[Out]

1/2*arctan(b^(1/4)*x/a^(1/4))*(-d*a^(1/2)+c*b^(1/2))/a^(3/4)/b^(3/4)+1/2*arctanh(b^(1/4)*x/a^(1/4))*(d*a^(1/2)
+c*b^(1/2))/a^(3/4)/b^(3/4)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1167, 205, 208} \[ \frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}}+\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)/(a - b*x^4),x]

[Out]

((Sqrt[b]*c - Sqrt[a]*d)*ArcTan[(b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c + Sqrt[a]*d)*ArcTanh[(
b^(1/4)*x)/a^(1/4)])/(2*a^(3/4)*b^(3/4))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 1167

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[e/2 + (c*d)/(2*q)
, Int[1/(-q + c*x^2), x], x] + Dist[e/2 - (c*d)/(2*q), Int[1/(q + c*x^2), x], x]] /; FreeQ[{a, c, d, e}, x] &&
 NeQ[c*d^2 - a*e^2, 0] && PosQ[-(a*c)]

Rubi steps

\begin {align*} \int \frac {c+d x^2}{a-b x^4} \, dx &=\frac {1}{2} \left (-\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {1}{-\sqrt {a} \sqrt {b}-b x^2} \, dx+\frac {1}{2} \left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {1}{\sqrt {a} \sqrt {b}-b x^2} \, dx\\ &=\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 a^{3/4} b^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 95, normalized size = 1.10 \[ \frac {2 \left (\sqrt {b} c-\sqrt {a} d\right ) \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\left (\sqrt {a} d+\sqrt {b} c\right ) \left (\log \left (\sqrt [4]{a}-\sqrt [4]{b} x\right )-\log \left (\sqrt [4]{a}+\sqrt [4]{b} x\right )\right )}{4 a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)/(a - b*x^4),x]

[Out]

(2*(Sqrt[b]*c - Sqrt[a]*d)*ArcTan[(b^(1/4)*x)/a^(1/4)] - (Sqrt[b]*c + Sqrt[a]*d)*(Log[a^(1/4) - b^(1/4)*x] - L
og[a^(1/4) + b^(1/4)*x]))/(4*a^(3/4)*b^(3/4))

________________________________________________________________________________________

fricas [B]  time = 0.62, size = 755, normalized size = 8.78 \[ \frac {1}{4} \, \sqrt {\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x + {\left (a^{3} b^{2} d \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt {\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) - \frac {1}{4} \, \sqrt {\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x - {\left (a^{3} b^{2} d \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt {\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) - \frac {1}{4} \, \sqrt {-\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x + {\left (a^{3} b^{2} d \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt {-\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) + \frac {1}{4} \, \sqrt {-\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x - {\left (a^{3} b^{2} d \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt {-\frac {a b \sqrt {\frac {b^{2} c^{4} + 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(-b*x^4+a),x, algorithm="fricas")

[Out]

1/4*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x +
 (a^3*b^2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - a*b^2*c^3 - a^2*b*c*d^2)*sqrt((a*b*sqrt((b^2
*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))) - 1/4*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^
2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x - (a^3*b^2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*
d^4)/(a^3*b^3)) - a*b^2*c^3 - a^2*b*c*d^2)*sqrt((a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c
*d)/(a*b))) - 1/4*sqrt(-(a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*log(-(b^2*c^4
 - a^2*d^4)*x + (a^3*b^2*d*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 + a^2*b*c*d^2)*sqrt
(-(a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))) + 1/4*sqrt(-(a*b*sqrt((b^2*c^4 + 2
*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x - (a^3*b^2*d*sqrt((b^2*c^4 + 2*a
*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 + a^2*b*c*d^2)*sqrt(-(a*b*sqrt((b^2*c^4 + 2*a*b*c^2*d^2 + a^2*d^4
)/(a^3*b^3)) - 2*c*d)/(a*b)))

________________________________________________________________________________________

giac [B]  time = 0.18, size = 230, normalized size = 2.67 \[ -\frac {\sqrt {2} {\left (b^{2} c + \sqrt {-a b} b d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (-\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (-\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, \left (-a b^{3}\right )^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (b^{2} c - \sqrt {-a b} b d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (-\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (-\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, \left (-a b^{3}\right )^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (b^{2} c - \sqrt {-a b} b d\right )} \log \left (x^{2} + \sqrt {2} x \left (-\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {-\frac {a}{b}}\right )}{8 \, \left (-a b^{3}\right )^{\frac {3}{4}}} + \frac {\sqrt {2} {\left (b^{2} c - \sqrt {-a b} b d\right )} \log \left (x^{2} - \sqrt {2} x \left (-\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {-\frac {a}{b}}\right )}{8 \, \left (-a b^{3}\right )^{\frac {3}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(-b*x^4+a),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(b^2*c + sqrt(-a*b)*b*d)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4))/(-a*b^3)^(
3/4) - 1/4*sqrt(2)*(b^2*c - sqrt(-a*b)*b*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(-a/b)^(1/4))/(-a/b)^(1/4))/(-a*
b^3)^(3/4) - 1/8*sqrt(2)*(b^2*c - sqrt(-a*b)*b*d)*log(x^2 + sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(-a*b^3)^(3/4
) + 1/8*sqrt(2)*(b^2*c - sqrt(-a*b)*b*d)*log(x^2 - sqrt(2)*x*(-a/b)^(1/4) + sqrt(-a/b))/(-a*b^3)^(3/4)

________________________________________________________________________________________

maple [B]  time = 0.00, size = 122, normalized size = 1.42 \[ \frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} c \arctan \left (\frac {x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} c \ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 a}-\frac {d \arctan \left (\frac {x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \left (\frac {a}{b}\right )^{\frac {1}{4}} b}+\frac {d \ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \left (\frac {a}{b}\right )^{\frac {1}{4}} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)/(-b*x^4+a),x)

[Out]

1/4*c*(a/b)^(1/4)/a*ln((x+(a/b)^(1/4))/(x-(a/b)^(1/4)))+1/2*c*(a/b)^(1/4)/a*arctan(x/(a/b)^(1/4))-1/2*d/b/(a/b
)^(1/4)*arctan(x/(a/b)^(1/4))+1/4*d/b/(a/b)^(1/4)*ln((x+(a/b)^(1/4))/(x-(a/b)^(1/4)))

________________________________________________________________________________________

maxima [A]  time = 2.29, size = 109, normalized size = 1.27 \[ \frac {{\left (\sqrt {b} c - \sqrt {a} d\right )} \arctan \left (\frac {\sqrt {b} x}{\sqrt {\sqrt {a} \sqrt {b}}}\right )}{2 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {{\left (\sqrt {b} c + \sqrt {a} d\right )} \log \left (\frac {\sqrt {b} x - \sqrt {\sqrt {a} \sqrt {b}}}{\sqrt {b} x + \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(-b*x^4+a),x, algorithm="maxima")

[Out]

1/2*(sqrt(b)*c - sqrt(a)*d)*arctan(sqrt(b)*x/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))*sqrt(b)) -
1/4*(sqrt(b)*c + sqrt(a)*d)*log((sqrt(b)*x - sqrt(sqrt(a)*sqrt(b)))/(sqrt(b)*x + sqrt(sqrt(a)*sqrt(b))))/(sqrt
(a)*sqrt(sqrt(a)*sqrt(b))*sqrt(b))

________________________________________________________________________________________

mupad [B]  time = 4.64, size = 579, normalized size = 6.73 \[ 2\,\mathrm {atanh}\left (\frac {8\,b^3\,c^2\,x\,\sqrt {\frac {c\,d}{8\,a\,b}-\frac {c^2\,\sqrt {a^3\,b^3}}{16\,a^3\,b^2}-\frac {d^2\,\sqrt {a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d+2\,a\,b\,d^3-\frac {2\,b\,c^3\,\sqrt {a^3\,b^3}}{a^2}-\frac {2\,c\,d^2\,\sqrt {a^3\,b^3}}{a}}+\frac {8\,a\,b^2\,d^2\,x\,\sqrt {\frac {c\,d}{8\,a\,b}-\frac {c^2\,\sqrt {a^3\,b^3}}{16\,a^3\,b^2}-\frac {d^2\,\sqrt {a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d+2\,a\,b\,d^3-\frac {2\,b\,c^3\,\sqrt {a^3\,b^3}}{a^2}-\frac {2\,c\,d^2\,\sqrt {a^3\,b^3}}{a}}\right )\,\sqrt {-\frac {a\,d^2\,\sqrt {a^3\,b^3}+b\,c^2\,\sqrt {a^3\,b^3}-2\,a^2\,b^2\,c\,d}{16\,a^3\,b^3}}+2\,\mathrm {atanh}\left (\frac {8\,b^3\,c^2\,x\,\sqrt {\frac {c\,d}{8\,a\,b}+\frac {c^2\,\sqrt {a^3\,b^3}}{16\,a^3\,b^2}+\frac {d^2\,\sqrt {a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d+2\,a\,b\,d^3+\frac {2\,b\,c^3\,\sqrt {a^3\,b^3}}{a^2}+\frac {2\,c\,d^2\,\sqrt {a^3\,b^3}}{a}}+\frac {8\,a\,b^2\,d^2\,x\,\sqrt {\frac {c\,d}{8\,a\,b}+\frac {c^2\,\sqrt {a^3\,b^3}}{16\,a^3\,b^2}+\frac {d^2\,\sqrt {a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d+2\,a\,b\,d^3+\frac {2\,b\,c^3\,\sqrt {a^3\,b^3}}{a^2}+\frac {2\,c\,d^2\,\sqrt {a^3\,b^3}}{a}}\right )\,\sqrt {\frac {a\,d^2\,\sqrt {a^3\,b^3}+b\,c^2\,\sqrt {a^3\,b^3}+2\,a^2\,b^2\,c\,d}{16\,a^3\,b^3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^2)/(a - b*x^4),x)

[Out]

2*atanh((8*b^3*c^2*x*((c*d)/(8*a*b) - (c^2*(a^3*b^3)^(1/2))/(16*a^3*b^2) - (d^2*(a^3*b^3)^(1/2))/(16*a^2*b^3))
^(1/2))/(2*b^2*c^2*d + 2*a*b*d^3 - (2*b*c^3*(a^3*b^3)^(1/2))/a^2 - (2*c*d^2*(a^3*b^3)^(1/2))/a) + (8*a*b^2*d^2
*x*((c*d)/(8*a*b) - (c^2*(a^3*b^3)^(1/2))/(16*a^3*b^2) - (d^2*(a^3*b^3)^(1/2))/(16*a^2*b^3))^(1/2))/(2*b^2*c^2
*d + 2*a*b*d^3 - (2*b*c^3*(a^3*b^3)^(1/2))/a^2 - (2*c*d^2*(a^3*b^3)^(1/2))/a))*(-(a*d^2*(a^3*b^3)^(1/2) + b*c^
2*(a^3*b^3)^(1/2) - 2*a^2*b^2*c*d)/(16*a^3*b^3))^(1/2) + 2*atanh((8*b^3*c^2*x*((c*d)/(8*a*b) + (c^2*(a^3*b^3)^
(1/2))/(16*a^3*b^2) + (d^2*(a^3*b^3)^(1/2))/(16*a^2*b^3))^(1/2))/(2*b^2*c^2*d + 2*a*b*d^3 + (2*b*c^3*(a^3*b^3)
^(1/2))/a^2 + (2*c*d^2*(a^3*b^3)^(1/2))/a) + (8*a*b^2*d^2*x*((c*d)/(8*a*b) + (c^2*(a^3*b^3)^(1/2))/(16*a^3*b^2
) + (d^2*(a^3*b^3)^(1/2))/(16*a^2*b^3))^(1/2))/(2*b^2*c^2*d + 2*a*b*d^3 + (2*b*c^3*(a^3*b^3)^(1/2))/a^2 + (2*c
*d^2*(a^3*b^3)^(1/2))/a))*((a*d^2*(a^3*b^3)^(1/2) + b*c^2*(a^3*b^3)^(1/2) + 2*a^2*b^2*c*d)/(16*a^3*b^3))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 0.73, size = 110, normalized size = 1.28 \[ - \operatorname {RootSum} {\left (256 t^{4} a^{3} b^{3} - 64 t^{2} a^{2} b^{2} c d - a^{2} d^{4} + 2 a b c^{2} d^{2} - b^{2} c^{4}, \left (t \mapsto t \log {\left (x + \frac {- 64 t^{3} a^{3} b^{2} d + 12 t a^{2} b c d^{2} + 4 t a b^{2} c^{3}}{a^{2} d^{4} - b^{2} c^{4}} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)/(-b*x**4+a),x)

[Out]

-RootSum(256*_t**4*a**3*b**3 - 64*_t**2*a**2*b**2*c*d - a**2*d**4 + 2*a*b*c**2*d**2 - b**2*c**4, Lambda(_t, _t
*log(x + (-64*_t**3*a**3*b**2*d + 12*_t*a**2*b*c*d**2 + 4*_t*a*b**2*c**3)/(a**2*d**4 - b**2*c**4))))

________________________________________________________________________________________